Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430938

RESUMO

Pesticide contamination and its adverse effects on native freshwater species continue to be a worldwide major concern, mainly in developing countries. Passive biomonitoring of pesticide pollution in shallow lakes may be achieved by the simultaneous use of fish and wetland plants. Thus, the present study aimed to evaluate the occurrence of current-use pesticides in the surface water of a shallow lake of the Austral Pampas region (Buenos Aires Province, Argentina) surrounded by intensive agricultural activities and its relationship with a battery of biomarkers, including oxidative stress and genotoxicity, in two native species, the fish Oligosarcus jenynsii and the macrophyte Bidens laevis. A total of 26 pesticide residues were analyzed, and the main ones detected were glyphosate and its metabolite aminomethylphosphonic acid (AMPA), chlorpyrifos, and imidacloprid. In O. jenynsii, hydrogen peroxide (H2O2) content in the liver increased with chlorpyrifos occurrence, while malondialdehyde (MDA) levels in the brain and liver increased with the presence of both chlorpyrifos and glyphosate. In B. laevis, H2O2 and MDA levels in leaves and roots increased with AMPA occurrence. Also, leaf H2O2 contents and root MDA levels increased with chlorpyrifos concentration. In contrast, catalase and peroxidase activities in roots decreased with AMPA and chlorpyrifos occurrence. In both species, mainly H2O2 and MDA levels demonstrated their sensitivity to be used as biomarkers in the biomonitoring of current-use pesticide pollution in shallow lakes. Their use may provide information to plan strategies for environmental conservation by government institutions or decision-makers, and to assess the biota health status.


Assuntos
Clorpirifos , Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/análise , Lagos , Clorpirifos/toxicidade , Monitoramento Biológico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Argentina , Peróxido de Hidrogênio , Monitoramento Ambiental , 60658 , Estresse Oxidativo , Peixes/metabolismo , Biomarcadores/metabolismo , Poluentes Químicos da Água/análise
2.
Waste Manag ; 174: 310-319, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086295

RESUMO

Poultry litter is a valuable source of nutrients for crop production, but its use in agriculture can lead to environmental and public health concerns due to the presence of pollutants, antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). We compared the effect of different on-farm poultry litter composting processes on physicochemical, biological, and toxicological parameters, as well as on the occurrence of antibiotics and resistant Escherichia coli. The composting treatments consisted of passively-aerated piles C:N = 19 (PAC19), mechanically-aerated piles C:N = 19 (MAC19), and mechanically-aerated piles C:N = 30 (MAC30). Poultry litter composting led to a significant reduction of antibiotic residues, enteroparasites and antibiotic resistant E. coli. The conditions of the process, such as extra C source and mechanical aeration influence the quality of the final product. MAC19 is a low-cost effective method to reduce the potential risks associated with poultry litter use in agriculture and produce good quality compost.


Assuntos
Compostagem , Animais , Aves Domésticas , Fazendas , Escherichia coli/genética , Antibacterianos/farmacologia , Antagonistas de Receptores de Angiotensina , Esterco/microbiologia , Inibidores da Enzima Conversora de Angiotensina
3.
Sci Total Environ ; 896: 165107, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37364828

RESUMO

Typha latifolia is widely used as a phytoremediation model plant for organic compounds. However, the dynamic uptake and translocation of pharmaceutical and personal care products (PPCPs) and their relationship with physicochemical properties, such as lipophilicity (LogKow), ionization behavior (pKa), pH-dependent lipophilicity (LogDow), exposure time and transpiration, are scarcely studied. In the current study, hydroponically grown T. latifolia was exposed to carbamazepine, fluoxetine, gemfibrozil, and triclosan at environmentally relevant concentrations (20 µg/L each). Eighteen out of thirty-six plants were exposed to the PPCPs and the other eighteen were untreated. Plants were harvested at 7, 14, 21, 28, 35, and 42 days and separated into root, rhizome, sprouts, stem, and lower, middle, and upper leaf sections. Dry tissue biomass was determined. PPCP tissue concentrations were analyzed by LC-MS/MS. PPCP mass per tissue type was calculated for each individual compound and for the sum of all compounds during each exposure time. Carbamazepine, fluoxetine, and triclosan were detected in all tissues, while gemfibrozil was detected only in roots and rhizomes. In roots, triclosan and gemfibrozil mass surpassed 80% of the PPCP mass, while in leaf carbamazepine and fluoxetine mass represented 90%. Fluoxetine accumulated mainly in the stem and the lower and middle leaf, while carbamazepine accumulated in the upper leaf. The PPCP mass in roots and rhizome was strongly positively correlated with LogDow, while in leaf it was correlated with water transpired and pKa. PPCP uptake and translocation in T. latifolia is a dynamic process determined by the properties of contaminants and plants.


Assuntos
Cosméticos , Triclosan , Typhaceae , Poluentes Químicos da Água , Typhaceae/química , Transpiração Vegetal , Fluoxetina , Triclosan/análise , Genfibrozila , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carbamazepina , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
4.
Chemosphere ; 288(Pt 1): 132480, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34626663

RESUMO

Passive uptake of contaminants of emerging concern (CECs) and its relationship with physicochemical properties, such as lipophilicity (LogKow), ionization behavior (pKa), distribution coefficient (LogDow) and transpiration rate are scarcely studied. In the current study, hydroponically grown corn (Zea mays) was exposed to carbamazepine (CBZ), fluoxetine (FLX), gemfibrozil (GBZ), triclosan (TRI) and atrazine (ATZ)) at environmentally relevant concentrations (20 µg/L each one). Plant tissue concentrations of CECs were determined several times over 21 days. Eighteen plants were used, nine exposed to the CECs and nine untreated. Whole plants were harvested at 7, 14 and 21 days and separated into roots, stem, leaf and male bud flower (only at 21 days). Hydroponic solution was maintained at pH 5.5 throughout the study. CECs concentrations in the exposure solution and tissues were determined by LC-MS/MS. ATZ metabolites desisopropylatrazine (DIA) and desethylatrazine (DEA) were determined by LC-DAD. In shoot tissues, CBZ, FLX and ATZ were detected, while TRI and GBZ were detected only in roots. Root concentrations were related with LogKow (R2ROOT = 0.415). Leaf and stem concentrations of CBZ, FLX and ATZ were linked with LogKow and strongly linked with pKa. Transpiration was related with CBZ and ATZ in shoot, but not related with FLX shoot levels. Neutral compounds such as CBZ (pKa = 13.94; 100% neutral) and ATZ (pKa = 1.6; 85% neutral) were taken up passively with transpiration. Root accumulation was related with CECs lipophilicity, while translocation and bioaccumulation in shoot were not only related with lipophilicity, but also with CECs ionization behavior and transpiration.


Assuntos
Atrazina , Poluentes Químicos da Água , Cromatografia Líquida , Transpiração Vegetal , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Zea mays
5.
Chemosphere ; 287(Pt 1): 132104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523452

RESUMO

The extensive use and environmental persistence of atrazine has resulted in its ubiquitous occurrence in water resources. Some reports have described atrazine bioaccumulation and biodegradation pathways in terrestrial plants, but few have done so in aquatic macrophytes. Thus, in this study, we aimed to analyze morphological changes, uptake, translocation and bioaccumulation patterns in tissues of the aquatic macrophyte Typha latifolia (cattail) after long-term atrazine exposure and to determine the presence of atrazine biodegradation metabolites, desethylatrazine (DEA) and desisopropylatrazine (DIA), in tissues. Plants were hydroponically exposed to 20 µg/L atrazine (18 exposed and 18 non-exposed) for 7, 14, 21, 28, 35 and 42 days. Plants were separated into root, rhizome, stem, and lower, middle and upper leaf sections. Atrazine was analyzed by LC-MS/MS and DIA and DEA by LC-DAD. Plants showed reductions in weight (after 21 days) and transpiration (after 28 days), both symptoms of chronic phytotoxicity. The distribution of atrazine within tissues, expressed as concentration levels (µg/kg dry weight), was as follows: middle leaf (406.10 ± 71.77) = upper leaf (339.15 ± 47.60) = lower leaf (262.43 ± 7.66) = sprout (274.53 ± 58.1) > stem (38.63 ± 7.55) = root (36.00 ± 3.49) = rhizome (26.15 ± 3.96). In submerged tissues, DEA and DIA were detected at similar concentrations. In leaves, DIA was the main metabolite identified. Results indicated that atrazine was taken up from roots to shoots and induced phytotoxicity effects that reduced the translocation to shoots. Typha likely is able to biodegrade atrazine via different metabolic pathways.


Assuntos
Atrazina , Herbicidas , Typhaceae , Atrazina/análise , Atrazina/toxicidade , Bioacumulação , Biodegradação Ambiental , Cromatografia Líquida , Herbicidas/toxicidade , Espectrometria de Massas em Tandem
6.
Environ Sci Pollut Res Int ; 28(7): 8530-8538, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33063213

RESUMO

Monensin is an ionophore antibiotic used as a feed additive and growth promoter in cattle production worldwide. The occurrence of monensin in aquatic surficial ecosystems is of concern due to its possible detrimental effects on human health and native biota. Argentina is one of the most important cattle beef producers worldwide; however, there is little knowledge on the environmental occurrence of monensin and the associated risks to aquatic biota. In this study, we developed a method for the extraction and quantification of monensin in surface water; then, we evaluated the occurrence of monensin in a stream impacted by different animal husbandry's operations, and then, we analyzed the ecological implications of monensin residues on aquatic organisms using the risk quotient (RQ) method. Sampling was carried out on August 2017 from the headwaters to the floodplain of the El Pantanoso stream, Buenos Aires province, Argentina. Monensin detection frequency was 75% (n = 20). The median level was 0.40 µg/L and the maximum concentration was 4.70 µg/L. The main input of monensin was from a cattle slaughterhouse, an activity that has not been considered before in the literature as a source of emission of veterinary pharmaceuticals into the environment. The RQ assessment showed that monensin levels could have potential negative effects on aquatic biota in the sampling site closest to the cattle slaughterhouse. The data obtained in this study shows that monensin was present in El Pantanoso surface waters at levels of high ecotoxicological risk to aquatic biota.


Assuntos
Drogas Veterinárias , Poluentes Químicos da Água , Animais , Argentina , Biota , Bovinos , Ecossistema , Monitoramento Ambiental , Monensin , Água , Poluentes Químicos da Água/análise
7.
Chemosphere ; 185: 975-982, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28753903

RESUMO

Glyphosate is intensively used in agricultural fields and it is frequently detected in non-target wetland ecosystems. The floating hydrophyte Ludwigia peploides is widely distributed in American streams and it is an abundant species. Therefore, our objectives were (1) to establish and validate an extraction and quantification methodology for glyphosate in L. peploides and (2) to evaluate the role of this species as a potential glyphosate biomonitor in an agricultural watershed. We developed a new method of glyphosate extraction from leaves of L. peploides. The method recovery was 117± 20% and the matrix effect 20%. To validate the method using environmental samples, plants of L. peploides were collected in March 2016 from eight monitoring sites of El Crespo stream. Surface water and sediment samples were collected at the same time to measure glyphosate and to calculate bioconcentration factors (BCFs) and biota-sediment accumulation factors (BSAFs). Glyphosate was detected in 94.11% in leaves, the concentrations ranging between 4 and 108 µg/kg. Glyphosate was detected in surface water and sediments at 75% and 100% of the samples, at concentrations that varied between 0 and 1.7 µg/L and 5-10.50 µg/kg dry weight, respectively. The mean BCFs and BSAFs were 88.10 L/Kg and 7.61, respectively. These results indicate that L. peploides bioaccumulates glyphosate mainly bioavailable in the surface water. In this sense, L. peploides could be used as a biomonitor organism to evaluate glyphosate levels in freshwater aquatic ecosystems because, in addition to its capacity to bioconcentrate glyphosate, it is easy to sample and it has a restricted mobility.


Assuntos
Glicina/análogos & derivados , Herbicidas/metabolismo , Onagraceae/fisiologia , Poluentes Químicos da Água/metabolismo , Agricultura , Ecossistema , Monitoramento Ambiental , Glicina/metabolismo , Herbicidas/análise , Rios , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...